
Agility and Lean for Avionics

First Issue, 01/04/2009

Emmanuel Chenu
emmanuel.chenu@ gmail .com

ABSTRACT
"Would you trust your life to a flight software grown1 by practitioners of Extreme-Programming?”
Almost surprisingly, agile software development has successfully brought value to avionics.
This article will introduce the difficulties encountered in this particular industry segment and
how Extreme Programming and Scrum have greatly helped to deal with some of them. We will
then consider how these agile practices contribute to the implementation of most of the
principles of Lean in order to grow high-integrity products of value while reducing costs.
This paper has been written in preparation for a conference and roundtable organized by
AdaCore2 entitled “The Lean, Agile Approach To High Integrity Software”3.
Pictures and references to companies have been removed from this issue for publication on the
web.

ASSUMPTIONS

In writing this article, I assumed that the reader is somewhat familiar with Agile Software
Development, Extreme Programming, Test Driven Development, Continuous Integration, Pair
Programming, Design By Contract, Scrum and Lean. However, the minimal prerequisites are
given hereafter or when needed.

ASSUMPTIONS / AGILE
Agile software development4 is an umbrella term for software development methods that share
the following values:

Individuals and interactions are valued more than processes and tools;
Working software is valued more than comprehensive documentation;
Customer collaboration is valued more than contract negotiation;
Responding to change is valued more than following a plan.

At a first glance, agile software development is pretty far removed from how we have traditionally
produced life-critical products. Our industry is more often characterized by processes, tools,
documentation and following plans.

The most famous of the agile methods are Extreme Programming and Scrum.

ASSUMPTIONS / AGILE / EXTREME PROGRAMMING
Extreme Programming5 can be considered as a set of simple, yet interdependent organizational
and engineering best practices. To reach maximal efficiency, they are combined and taken to
extreme levels.
1 I like the metaphor saying that software is grown and not built. The product grows as it is

iteratively enriched with increments of functionality. Such an approach to software
development requires the constant care of a gardener weeding and tending his garden. As the
saying goes: “software is soft and buildings aren't”. For more on software development
metaphors, read http://www.codinghorror.com/blog/archives/000987.html

2 http://www.adacore.com/
3 March 26, 2009 http://www.adacore.com/home/ada_answers/lectures/lean-event/
4 http://agilemanifesto.org/
5 http://www.extremeprogramming.org/

Page 1/13 - Agility and Lean for Avionics - 4/1/2009

http://www.extremeprogramming.org/
http://agilemanifesto.org/
http://www.adacore.com/home/ada_answers/lectures/lean-event/
http://www.adacore.com/
http://www.codinghorror.com/blog/archives/000987.html
mailto:emmanuel.chenu@fr.thalesgroupgmail.com
mailto:emmanuel.chenu@fr.thalesgroupgmail.com
mailto:emmanuel.chenu@fr.thalesgroupgmail.com

For example, code reviews are a best practice, so XP6 recommends Pair Programming. All
production code is written by pairs of programmers working together at the same workstation.
One types in code while the other reviews each line of code as it's typed in. The two
programmers switch roles frequently.

Tests are a best practice, so XP recommends Test Driven Development. It consists of short
cycles based on the following steps: write failing automated self-checking tests that define
desired changes or new functionality; write just enough code to make the failing tests succeed7

and then refactor the code to improve the design. This technique is used at two levels: customer
acceptance tests and developer unit tests. All tests are run automatically and repeatedly.

Design is important, so XP recommends Refactoring. Without changing the behavior of the
system, the code is changed to improve the design. Improvements consist in removing duplicated
code, making the code more explicit and simpler.

Simplicity avoids waste, so XP recommends Simple Design. The simplest working solution is im-
plemented.

Integration is risky, so XP recommends Continuous Integration. A shippable program including
the latest changes is always available. Programmers always work on the latest version of the
software. Therefore they check in their code and integrate several times per day.

Customer feedback is important, so XP recommends Small Releases. Short iterations provide
increments of shippable and usable products which allow customer feedback.

Customer collaboration and communication are important, so XP recommends Whole Teams.
The team contains all the skills required to make the project succeed. The customer is part of the
team. The team shares a common workspace.

XP is considered by some of its detractors as a framework for hacking and cowboy coding. On
the contrary, we believe XP is a set of disciplined and rigorous practices.

ASSUMPTIONS / AGILE / SCRUM
Scrum8 is a lightweight pragmatic project management framework. A self-organizing team grows
increments of shippable product in monthly iterations. The iterations implement the highest
priority features first. The customer prioritizes the features by business value. Unlike XP, Scrum
does not address engineering practices9. However, Scrum fits in smoothly with the disciplined
and rigorous engineering practices of XP.

ASSUMPTIONS / LEAN
Lean is a production practice that considers the expenditure of resources for any goal other than
the creation of value for the end customer to be wasteful, and thus a target for elimination. In a
more basic term: “More value with less work”.

6 XP: Extreme Programming
7 Please note that this practice, also named Test-First Programming, implies full code coverage

by tests at all times.
8 http://www.controlchaos.com/
9 Some projects adopting Scrum fail because they forget to combine Scrum with serious

engineering practices such as those of XP.

Page 2/13 - Agility and Lean for Avionics - 4/1/2009

http://www.controlchaos.com/

AVIONICS

In the avionics business, we develop airborne flight equipment. A failure in such a product may
impact the safety of flight, making it a life-critical product. A great deal of the functionalities are
performed by real-time, embedded software. They must be certified by a specialized organization
to ensure the safety of flight. Apart from some difficulties shared with the larger, more general
software development industry, this segment is confronted by the issues of real-time embedded
technology and safety-criticality. Lets now consider each of these difficulties and how XP helps
to deal with them.

REAL-TIME EMBEDDED TECHNOLOGY & AGILE

REAL-TIME EMBEDDED / SPECIFIC HW AND RTOS
The software runs on a specific hardware with a specific real-time operating system. The
developers must deal with real-time requirements, multi-threaded computations and cope with
limited processing and memory resources.

REAL-TIME EMBEDDED / TEST AND INTEGRATION / ISSUES
Often, the HW10 and the RTOS11 are developed in parallel to the software. In such a case, both
are available late in the project and in limited quantities. Therefore our typical SW12/SW and SW/
HW integrations were late and Big Bang-ish.
Testing at this stage was not efficient. It essentially consisted in debug sessions on the target.
Moreover, it was a pity to check complex business algorithms on the non-ergonomic development
environment of the HW target.

REAL-TIME EMBEDDED / TEST AND INTEGRATION / AGILE SOLUTIONS
The practice of XP's TDD13 naturally decouples the code. Systematic unit testing leads to an
architecture where the core functionality is separated from the HW and the RTOS. The remaining
necessary dependencies are isolated. When combined with an Object-Oriented programming
language, TDD enables to run test suites on a development machine with mocks and stubs14 of
the HW and the RTOS without changing the system under test thanks to dependency injection15.
Therefore, the code is tested and mostly integrated well before the HW and RTOS are available16.
The very same tests are then run on the target when it is finally available17.

In fact, not having the HW and the RTOS, once a problem now becomes an asset. It requires to
design an architecture where problems such as core functionality on one hand and the HW and
RTOS on the other hand are clearly and cleanly separated. The core functionality (with the
reusable business code) is fully tested on a development machine and the interfacing with the
HW and the RTOS is tested on the target.

Thanks to the trust the developer has built into his fully tested code, he knows that the problems

10 HW: hardware
11 RTOS: real-time operating system
12 SW: software
13 TDD: test driven development
14 Mocks aren't stubs: http://martinfowler.com/articles/mocksArentStubs.html
15 Refer to http://en.wikipedia.org/wiki/Dependency_injection or

http://martinfowler.com/articles/injection.html
16 Read Progess Before Hardware:

http://masters.donntu.edu.ua/2005/fvti/semisalova/library/progressbeforehardware.pdf
17 When coding in Ada, building test suites using a native version of the embedded Ada runtime

Page 3/13 - Agility and Lean for Avionics - 4/1/2009

http://www.objectmentor.com/resources/articles/EmbeddedTddCycle-v1.0.pdf
http://www.objectmentor.com/resources/articles/EmbeddedTddCycle-v1.0.pdf
http://martinfowler.com/articles/injection.html
http://en.wikipedia.org/wiki/Dependency_injection
http://martinfowler.com/articles/mocksArentStubs.html

he will encounter on the target will now only concern issues of real-time, multi-threading, limited
resources and improper interfaces with the HW or the RTOS.

PROGRESS BEFORE HARDWARE18
Recently, we have developed a navigation software program for a customer who had no spare
HW target to lend us during our development. Moreover, the customer did not want us to
integrate our code onto his few hardware prototypes because his teams would have to code
with one less board available. So, for 6 months we grew our code using TDD with stubs and
mocks of the HW and the RTOS. Finally we came to integrate at the customer site. The
SW/HW integration took 4 days and we discovered 6 defects. All concerned SW/HW interfaces
and none concerned the code's functionality. The bug rate was 0.3 bugs per 1 KLOC. The
customer was happy because he had one HW prototype unavailable for his teams for just 4
days.

REAL-TIME EMBEDDED / REUSE AND PORTING / ISSUES
We have never managed to reuse or efficiently port code that is heavily coupled to the HW or the
RTOS. Porting an application from one target to another meant great costs.

REAL-TIME EMBEDDED / REUSE AND PORTING / AGILE SOLUTIONS
As TDD separates the core functionality from the HW and the RTOS, reuse and porting have now
become common practice. With multi-project version control and Continuous Integration, we now
grow products where 30% of the code is reused among products of different product lines and
60% of the code is reused among products of the same family.

library is a great way to ensure the tests may be run on the target without adaptation.
18 « Progress Before Hardware » come from James Grenning. Read his paper:

http://masters.donntu.edu.ua/2005/fvti/semisalova/library/progressbeforehardware.pdf

Page 4/13 - Agility and Lean for Avionics - 4/1/2009

http://masters.donntu.edu.ua/2005/fvti/semisalova/library/progressbeforehardware.pdf

SAFETY & AGILE

The main concern in avionics remains safety.

SAFETY / LEVEL OF CRITICALITY
A level of criticality is given to avionics software according to the impact of a failure of that
software on the flight's safety. The levels range from "A. Catastrophic: may cause a crash" to "E.
No effect".

SAFETY / GUIDELINES
Document DO178B, published in 1992, specifies the objectives to achieve during development in
order to certify software for flight. Proof of airworthiness is obtained after a series of audits. They
require the inspection of proofs of the activities carried out to support these objectives.

SAFETY / OBJECTIVES
As the level of criticality increases, so does the number of objectives to satisfy. They concern the
software life cycle processes.
Safety analysis is difficult to perform for software because it is not feasible to assess the number
and the different kinds of software errors. An acceptable means for ensuring the safety of
software is to impose rigor on the process used to build it. The level of airworthiness of a software
program will be obtained by a given level of rigor in the development process, to prevent with
enough confidence any remaining bug.

THE CLEAN WATER PIPE METAPHOR
If we use a metaphor where the pipe is the process and the water is the product, then the idea
behind the guidelines is that a dirty pipe cannot deliver clean water. However, a clean pipe
helps to deliver clean water

SAFETY / TRADITIONAL PROCESS
The DO178B defines objectives that must be satisfied but not the process to achieve these
objectives. The objective-based nature of DO178B allows a great deal of flexibility in regard to
following different styles of software life cycles. For example, the guidelines explicitly mention
iterative and incremental19 development. However, as the objectives concern the software life
cycle, its activities, the activity entry and exit criteria and the proofs expected, the V model has
historically been the common way to drive DO178B compliant developments. Also, software has
been certified using this method so it is still used for this purpose.

SAFETY / ISSUES
A certification audit will check that the product exclusively contains code satisfying operational
requirements. The implementation of all the operational requirements and all the code will have to
be verified by tests. All the tests will be performed on the final airborne version of the program. A
minor change in the code of the final version implies that all the tests be run again20. Also, all the
products (requirements, architecture, code, tests, traceability) will have to be validated in a review
process. These activities may imply a considerable amount of work.

SAFETY / AGILE SOLUTIONS
Fortunately XP's practices contribute to achieve safety objectives.
XP's incremental construction driven by operational scenarios enforces that the product will
exclusively contain code implementing operational requirements.

19 The process is iterative and incremental when activities are repeated to add usable
functionality to a shippable product.

20 This can imply a considerable cost if testing is performed manually by an operator.

Page 5/13 - Agility and Lean for Avionics - 4/1/2009

XP's systematic acceptance testing will guarantee that the implementation of all operational
requirements is successful.
XP's systematic developer testing will ensure that all the code is checked by tests21.
XP's Test First Programming is a great way to enforce independence of tests versus code.
The full acceptance and developer self-checking tests are run automatically by the Continuous
Integration tool when code is changed. This ensures at a minimum cost that the latest version of
the program is always fully and repeatably tested.
Finally, XP's Pair Programming practice will ensure that all products are reviewed.

Therefore, the practice of XP helps to develop efficiently and brings value for certification.

AUTOMATED SELF-CHECKING TESTS ARE SAFER (AND CHEAPER)
Recently, a friend and I quickly walked through an open space where developers where
running tests on a high-integrity software. We both noticed that all the tests procedures where
run manually. We also noticed that an operator was distractedly typing a SMS message on his
cell phone while running a manual test. I am sure that the manual test procedure was boring. I
am sure that the operator already ran this test several times. I am sure that this test run was
not used for certification purposes. However, my friend and I felt we would be more comfortable
if the tests where automatically and repeatably run instead of manually performed by a
distracted and tired operator.

SAFETY / BEWARE OF THE LEVEL OF FORMALISM REQUIRED
However, without any adaptation, XP’s set of by-the-book practices does not provide the
formalism and the proofs required for certification inspections.

SAFETY / ADAPT XP
This is why we have a practice of XP tailored for our industry. The values and principles of XP
remain perfectly compatible with safety issues. However, some practices need to be adapted. For
example, the documentation must be considered as part of the product. Therefore, the
documents must be incrementally written to be potentially shippable after each iteration. Here's
an example of a practice we added.

SAFETY / REQUIREMENTS AND TRACEABILITY / ISSUES
We have noticed that when we have trouble certifying a software program, the issues mainly
concern requirements and traceability.

SAFETY / REQUIREMENTS AND TRACEABILITY / AGILE SOLUTIONS
In XP, all the difficult activities are performed early and often. Reviews are performed
continuously in pairs. Testing is continuously led by Test First Programming. Integration is
performed often thanks to Continuous Integration. Architecture is done early and often through
iterative and incremental development with continuous refactoring.
Requirements and traceability are an issue, so we've added the continuous traceability practice.
As we work, we record the traceability links. Full traceability is continuously and automatically
consolidated, quantified, checked and finally published. Therefore, full traceability is always
available and issues are detected early and corrected early.

21 I insist: TDD implies full code coverage by tests at all times.

Page 6/13 - Agility and Lean for Avionics - 4/1/2009

TEAMS & AGILE

In avionics, we also face human resource issues.

TEAMS / ISSUES
We have problems finding developers experienced in software engineering, embedded software
and avionics. Also, team members seem to lose some of their initial motivation on large, long-
lasting projects that are punctuated by quite a lot of documentation and traceability. This feeling is
accentuated by the historical mass-production culture and the CMMi which both tend to have
interchangeable workers through the separation of thinking from doing.

TEAMS / AGILE SOLUTIONS
When you don't have all the experienced developers you wish you had, XP helps because its
practices enforce training on the job. Multidisciplinary teams, working in pairs in a common
workspace enable to speed-up training. Also, XP enforces personal motivation by the special
importance granted to the individual, the human touch in programming, teamwork, team spirit and
self-organizing teams.

CONCLUSION AND TRANSITION TO LEAN

Practice has proven us that agile development and XP in particular help to grow real-time
embedded and life-critical software. However, these approaches to software development do not
provide the level of formalism with the proofs required for certification purposes. Tailoring is
required.
We have also experienced that the bottom-up agile methods match nicely with top-down Lean
approach to product development.

Page 7/13 - Agility and Lean for Avionics - 4/1/2009

AGILE & LEAN

Toyota develops and builds life-critical products. When you are driving your car at 130 kilometers
per hour on the highway with the cruise control system on, you are trusting your life to a high
integrity product. A failure in the system may endanger the safety of the ride.
Toyota has designed a philosophy for developing and manufacturing products. Westerners have
named it Lean.
To develop products of value while reducing costs, we are trying to shift our industrial paradigm
from mass-production to Lean. Agile software development, with XP and Scrum, enable us to
implement most of the principles of Lean for our development projects.

LEAN / THE 5 PILLARS
The 5 pillars of Lean are Value, Value Stream, Flow, Pull and Perfection. Let’s now consider how
our agile practices help to implement most of these principles.

LEAN / VALUE
"Specify value from the standpoint of the end customer."
XP recommends having an on-site customer. Unfortunately, we cannot have a certifier, an aircraft
manufacturer and a pilot in each of our project teams. So, as recommended in Scrum, our project
teams have a Product Owner22 who represents the customer. In our case an avionics expert
represents the aircraft manufacturer and the pilot. Also, a dedicated quality assurance engineer
represents the certifier.
The Product Owner expresses product value using requirements. He expresses his satisfaction
criteria by providing acceptance tests.
The Product Owner prioritizes the requirements by business value. This list of prioritized
requirements is Scrum's Product Backlog23. The priorities define the succession of development
iterations that incrementally grow the product. Therefore the iteration plan maximizes the
customer's return on investment.

LEAN / VALUE STREAM
"Identify all the steps in the value stream for each product family, eliminating every step that does
not create value."
There is no agile practice that really helps here, though all XP practices implement the Simplicity
value, which consists in maximizing the amount of things to not do. Therefore, we practice
classical Lean Value-Stream-Mapping.

LEAN / VALUE STREAM / DO NOT SPUR A WILLING HORSE
In Value-Stream-Mapping, you have to learn to see waste. Waste is work that creates no value.
For example, in our industry, we are terrorized by the fact that our program will not fit on the
target due to excessive CPU load or excessive memory occupation. Therefore, many in our
industry optimize prematurely their code. They optimize on fear and not on facts. This can be
considerable waste, as the code may be good enough! The effort of optimizing is then completely
lost. Even worse, the optimized code is more complex for no reason. Therefore, our practice is to
not optimize prematurely.
However, we monitor performance early and often. Code will then be optimized on hard facts. We
believe that it is far easier to make a correct program fast than it is to make a fast program

22 The Product Owner is the person who is responsible for what the team builds and for
optimizing the value of it. The Product Owner is responsible for maximizing the value of the
product being developed while minimizing the risk. The Product Owner represents the
stakeholders in the project.

23 The Product Backlog is a prioritized list of functional and nonfunctional requirements and
features to be developed for a new product or to be added to an existing product.

Page 8/13 - Agility and Lean for Avionics - 4/1/2009

correct. To get hard facts, we automate CPU load measurement and code profiling in our
development cycle and start these activities early.

How do we prevent premature optimization from creeping into the code? XP teaches us to
practice Pair Programming. These continuous code reviews among pairs enable programmers to
detect and discourage premature optimization.

DO NOT OPTIMIZE PREMATURELY
Navigator: “We need to store those 30 booleans.”
Driver: “Here's an integer.”
Navigator: “Do you mean you want to store those 30 booleans on the 30 first digits of that
integer?”
Driver: “Hey, isn't that clever and efficient?”
Navigator: “And you want to code operations to encode and decode booleans on the digits on
an integer?”
Driver: “Just common stuff.”
Navigator: “Tell you what, let’s simply use an array of 30 booleans, run the tests and check-in
the code. Tomorrow, well get the results of the nightly automated code profiling and this Friday
we'll measure the CPU load and memory occupation on the target.”
Driver: “What if we do not satisfy the resource requirement because of our code?
Navigator: “What if we stop programming because the financial crisis could prematurely end
this project?”
Driver: “OK, I get your point.“

LEAN / FLOW
"Make the remaining value-creating steps occur in a tight and integrated sequence so the product
will flow smoothly towards the customer."
To ensure a steady flow, we reduce the size of the batches of work. We settled for Scrum’s
regular 4-week time box, called a Sprint24. A Sprint is an iteration providing a potentially shippable
increment of product. Iterative and incremental development in short regular cycles ensures
continuous flow of value. To maintain flow, we try to fix the problems that slow it down.

 Which issues in software development slow down the flow of value?

LEAN / FLOW / DESYNCHRONIZATIONS
For example, desynchronization works against flow.
Team members take a clean version of the software into their own private workspace to add
functionality to it. They then do not disturb other team members with implemented changes. As
soon as a developer changes something on the software in his private workspace, he is
desynchronized from the mainstream software. There will be some amount of effort to push his
changes back into the flow of the mainstream software. This effort is commonly called integration.

We minimize these desynchronizations, and therefore the integration effort thanks to 2 agile
practices. Scrums' short daily stand-up meetings25 enforce a steady flow by synchronizing the
team members and their activities. Also, XP's Continuous Integration ensures a steady flow of
tested, integrated and shippable code. Thanks to these two practices, teamwork and the product
remain desynchronized as short as possible.

24 A Sprint is an iteration in Scrum, normally of a one-month duration. A Sprint delivers a
shippable increment of valuable product.

25 A daily stand-up meeting is a short focused team meeting. Each team member answers to 3
questions: What did he do yesterday? What does he plan to do today? Is any impediment
slowing down his work?

Page 9/13 - Agility and Lean for Avionics - 4/1/2009

LEAN / FLOW / DEFECTS
Bugs slow down the flow as time is spent on debugging.

LEAN / FLOW / DEFECTS / PREVENTIVE ATTITUDE
A preventive attitude toward defects makes sure bugs least affect the flow. To prevent bugs from
creeping into the software we use several agile practices such as XP's Test First Programming26

and Pair Programming. Also, Design By Contract27 helps us to grow foolproof code, as you can't
use the code in any other way than required by its preconditions28. Finally, changes cannot be
delivered into the project repository if the tests fail.

LEAN / FLOW / DEFECTS / PROGRAMMING LANGUAGE
An object oriented programming language with an xunit framework is a great asset for practicing
TDD. The object-oriented features enhance testability as they enable easy mocking and stubbing.
A programming language with embedded Design By Contract features such as preconditions and
postconditions29 checked at runtime is a great asset for growing fool proofed software.
Therefore, your programming language may help to have a preventive attitude towards defects30.

LEAN / FLOW / DEFECTS / STOP THE LINE
Unfortunately bugs still manage to creep into the code. In order to maintain a steady flow, we
practice Lean's “Stop The Line”31.
Our Continuous Integration tool compiles the code and runs all the tests as soon as it detects a
change in the mainstream code. If the build fails for any reason, such as a failed test, then an
email is sent to every team member. Then, our main priority is to stop and fix the bug. Design By
Contract also enforces «Stop the line», as the precondition and postcondition assertions32 abort
the software as soon as an assertion fails. To run the code, there is no other available solution
than to fix the code.

LEAN / FLOW / DEFECTS / FIXING
A Continuous Integration system that continuously builds and tests the system and yells when it
detects a failure is a practical way of stopping to fix problems. The automated build, the
automated tests and the assertions in the code exercised by the tests are the failure detectors.
This practice builds a culture of stopping to fix problems, to get quality right the first time.

26 In TDD, tests are meant to prevent bugs and not to detect bugs.
27 Design By Contract is a technique that focuses on documenting, checking, and agreeing to

the rights (preconditions) and responsibilities (postconditions) of software modules to ensure
program correctness.

28 The precondition of a routine is what must be true in order for the routine to be called.
29 The postcondition of a routine is what the routine guarantees as long as its precondition is

true.
30 Several iterations of practice have convinced us that AdaCore's Ada2005 package containing

full object-oriented features, built-in Design By Contract and the Aunit test framework is a
great asset for growing high-integrity software.

31 Production stops if an abnormal situation arises. This prevents the production of defective
products, eliminates overproduction and focuses attention on understanding the problem and
ensuring that it never recurs. It is a quality control process that applies the following four
principles: Detect the abnormality; Stop; Fix or correct the immediate condition; Investigate the
root cause and install a countermeasure.

32 An assertion is a predicate (i.e., a true–false statement) placed in a program to indicate that
the developer thinks that the predicate is always true at that place. Several modern
programming languages include checked assertions that are checked at runtime. If an
assertion evaluates to false at run-time, an "assertion failure" results, which typically causes
execution to abort. This draws attention to the location at which the logical inconsistency is
detected. Assertions may be deactivated at compilation.

Page 10/13 - Agility and Lean for Avionics - 4/1/2009

LEAN / FLOW / INFORMATION
Finally, we ensure a smooth flow of information inside the team by collocating multidisciplinary
teams in a common workspace. The team uses visual control so no problems are hidden. Indeed,
the common workspace is loaded with Kanban33 charts identifying bottlenecks, Burndown Charts
measuring progress and Blocking Boards revealing impediments.

LEAN / FLOW / CONCLUSION
Iterative and incremental development in short cycles and Continuous Integration are short cycled
processes that ensure continuous flow to bring problems to the surface. Flow is maintained by
stopping to fix these problems.

LEAN / PULL
"As flow is introduced, let customers pull value from the next upstream activity."
The features to implement are prioritized by the Product Owner in the Product Backlog. The
iterations successively pull the highest priority features out of the Product Backlog to transform
them into valuable software. Therefore, by prioritizing the features in the Product Backlog, the
customer is pulling the development of his product. In fact, the incremental and iterative
development of prioritized features is a pull system for product development.

When a feature is pulled out of the Product Backlog, all the activities carried out to transform it
into valuable software are identified in the Value Stream Map and pulled by a Kanban system.

In TDD, failing acceptance and developer tests are a pull system for coding. Indeed, the failing
tests are written first and then just enough coding is pulled to make the failing tests succeed. TDD
can therefore be considered as a pull system for coding!

LEAN / PULL / CONCLUSION
Pull is implemented at several levels. Incrementally growing a product by developing the
customer's highest priority business value first is a pull system for product development. Failing
acceptance tests and unit tests pull coding34. Daily tasks are pulled by the Kanban system. These
pull systems avoid overproduction.

LEAN / PERFECTION
"As these steps lead to greater transparency, enabling managers and teams to eliminate further
waste, pursue perfection through continuous improvement."
At the end of each monthly iteration, we run a Scrum retrospective35 meeting. During this
meeting, the team and the Product Owner analyze the iteration and try to improve the
development practices.

LEAN / LEAN HELPS
Lean has really helps us in two ways. Firstly, Lean contributes practices not available in agile
software development such as value stream mapping, Kanban pull systems and stopping to fix
problems. Lean also helps to communicate efficiently on our practices and their motivations.
Management and customers are not necessarily receptive to vocabulary such as Agile, Extreme
Programming, Scrum, ScrumMaster, Pair Programming, Stand Ups and retrospectives. The
vocabulary seems awkward and intuitively and erroneously more fitted for hacking and cowboy

33 A Kanban is a signaling system to trigger action.
34 May I insist one last time? Test First Programming ensures full code coverage by tests.
35 A retrospective is a time-boxed meeting after the Sprint Review when the Scrum Team

reviews the just-finished Sprint. After reviewing everything that worked well and things that
could be improved, the team defines several changes to how it will work together for the next
Sprint.

Page 11/13 - Agility and Lean for Avionics - 4/1/2009

coding. On the other hand, Lean has a lot of credit in the industry as it successfully grew from the
industry.

CONCLUSION
We are not doomed to use predictive development processes to build critical or embedded
software. Hard facts show that Agile Software Development helps in our field. Its practices
implement most of the pillars of Lean to grow high-integrity products of value while reducing
costs.
These best practices may be sorted in two main categories: organizational and engineering
practices. They are interdependent and must be combined to be effective. Iterative and
incremental development in short cycles will not succeed if you have not settled rigorous and
disciplined engineering practices. Successfully adopting an Agile and Lean approach to
growing software requires serious technical practices such as automation, TDD, Continuous
Integration, Design By Contract and object-oriented programming. In Agile Software
Development, in Lean and in high-integrity product development, technical excellence remains
an absolute requirement.

ACKNOWLEDGMENTS
I would like to thank Jamie Ayre and Kathy Fairlamb from AdaCore, Galia Ladiray-Wiess from
AKKA Technologies and Jean-Pierre Decoux from Orange Business Services who provided
much needed feedback and corrections to this paper.

FURTHER READING

On Extreme Programming:
• Extreme Programming Explained: Embrace Change, Kent Beck, ISBN-10: 0321278658

On Scrum:
• Agile Software Development With Scrum, Ken Schwaber and Mike Beedle, ISBN-10:

0130676349
• Agile Project Management With Scrum, Ken Schwaber, ISBN-10: 073561993X

On Lean Software Development:
• Lean Software Development: An Agile Toolkit, Mary and Tom Poppendieck, ISBN-10:

0321150783
• Implementing Lean Software Development: From Concept to Cash, Mary and Tom

Poppendieck, ISBN-10: 0321437381
• Lean Software Strategies: Proven Techniques For Managers And Developers, Peter

Middleton and James Sutton, ISBN-10: 1563273055

On object-oriented programming and Design By Contract:
• Object-Oriented Software Construction, Bertrand Meyer, ISBN-10: 0136291554

On agile development and embedded software:
• Embedded Extreme Programming: An Experience Report36 - Nancy Van Shooenderwoert

- 2004
• Effective Test Driven Development for Embedded Software37 - Michael J. Karlesky,

William I. Bereza, Carl B. Erickson - 2006

36 http://www.agilerules.com/articles/Embedded_Extreme_Programming_Experience_Report.pdf
37 http://atomicobject.com/files/EIT2006EmbeddedTDD.pdf

Page 12/13 - Agility and Lean for Avionics - 4/1/2009

http://atomicobject.com/files/EIT2006EmbeddedTDD.pdf
http://www.agilerules.com/articles/Embedded_Extreme_Programming_Experience_Report.pdf

• Extreme Programming And Embedded Software Development38 - James Grenning –
2002

• Progress Before Hardware39 - James Grenning - 2004
• Embedded Test Driven Development Cycle40 - James Grenning - 2004

On agile development and critical software:
• Towards An Agile Avionics Process41 - Andrew Wils, Stefan Van Baelen – 2007
• XP in a Safety-Critical Environment42 - Mary Poppendieck – 2007
• Launching XP Extreme Programming at a Process-Intensive Company43 - James

Grenning - 2001

38 http://www.objectmentor.com/resources/articles/EmbeddedXp.pdf
39 http://masters.donntu.edu.ua/2005/fvti/semisalova/library/progressbeforehardware.pdf
40 http://www.objectmentor.com/resources/articles/EmbeddedTddCycle-v1.0.pdf
41 http://www.agile-itea.org/public/papers/agileavionics.pdf
42 http://www.poppendieck.com/safety.htm
43 http://www.objectmentor.com/resources/articles/XP-In-Process-Intensive-Company-IEEE.pdf

Page 13/13 - Agility and Lean for Avionics - 4/1/2009

http://www.objectmentor.com/resources/articles/XP-In-Process-Intensive-Company-IEEE.pdf
http://www.poppendieck.com/safety.htm
http://www.agile-itea.org/public/papers/agileavionics.pdf
file:///C:/Documents and Settings/Famille Chenu/Bureau/ 	 http://www.objectmentor.com/resources/articles/EmbeddedTddCycle-v1.0.pdf
http://masters.donntu.edu.ua/2005/fvti/semisalova/library/progressbeforehardware.pdf
http://www.objectmentor.com/resources/articles/EmbeddedXp.pdf

	First Issue, 01/04/2009
	Emmanuel Chenu
	Object-Oriented Software Construction, Bertrand Meyer, ISBN-10: 0136291554

