
Change Tolerant Code

Emmanuel CHENU
emmanuel.chenu@fr.thalesgroup.com
http://emmanuelchenu.blogspot.com

In most of the books I've read concerning software development, we are told to accept change. The authors
share several practices to write change tolerant code. This article is a compilation of these various
practices and of personal experience.

Use a version-control system. With such a tool, you can roll-back from a change which brought
regressions into the code.
Work in short iterations and integrate continuously. Always have an operational application, ready to be
changed.
Design-by-contract with assertions. The assertions will stop at runtime when a contract is broken by a
side-effect of a change.
Test-driven development. The automated self-checking tests will detect any regression brought into the
code by a change.
Measure code coverage by tests. You don't a change to affect a non-tested part of the code. Identify the
lines of code never exercized by tests, and add some test cases.
Apply the Single Responsiblity Principle (SRP). As Robert Martin says in AGILE SOFTWARE
DEVELOPMENT:

A class should have only one reason to change.

Apply the Common Closure Principle. As Robert Martin says in AGILE SOFTWARE DEVELOPMENT:

The classes in a package should be closed together against the same kind of changes. A
change that affects a closed package affects all the classes in that package and no other
packages.

Use design-patterns. Many design-patterns organize your design to anticipate change.
Use layering, information hiding and encapsulation. This limits coupling by regrouping and isolating
cohesive code which may be affected by change, therefore limiting the impact of change into the code.
Simplicity. It's just easier to change simple code.
Write less code. It's just easier when there is less code to change.
No repetition. Don't do the same change twice.
Stop-the-line. Detect regressions brought by change as soon as possible. Then, stop work, correct the
problem and resume work. A continuous-integration tool which detects changes, builds the application, runs
the tests and notifies the development team when a failures occurs can really help.
Refactor. Refactor the code and the tests to keep them healthy:eliminate complexity and repetition. The
code will be easier to change.

08/01/08 - 1/1

http://emmanuelchenu.blogspot.com/
mailto:emmanuel.chenu@fr.thalesgroup.com

